Redox-Additive Gel Polymer Electrolyte Based on the Biodegradable Polymer Pectin for Supercapacitors with Enhanced Thermal Stability

The implementation of environmentally green materials in energy storage technologies is essential to ensure a fair and ethical transition to net zero. In this work, we present a gel electrolyte (GPE) based on pectin, a biodegradable natural biopolymer synthesized by using lithium chloride (LiCl) and potassium iodide (KI) as redox additives to enhance the performance of a supercapacitor. GPE shows enhanced thermal stability and flame retardancy, as confirmed by thermogravimetric and differential scanning calorimetry analysis. The optimized redox-additive GPE exhibits high flexibility and outstanding electrochemical properties including a high ionic conductivity (σ = 43 mS cm–1) at room temperature and a wide stable potential window (∼2 V vs Ag/Ag+). The optimized GPE, with a redox additive and without, was tested with activated carbon electrodes derived from melon peel waste in symmetric supercapacitors. The addition of a redox additive to GPE films directly influences the performance of supercapacitors, leading to a 5 times increase in the specific capacitance (∼437 F g–1) and specific gravimetric energy density (∼34 Wh kg–1). The optimized supercapacitor exhibits stable cycling performance up to ∼8000 cycles by having an initial ∼31% fade in capacitance and a high Coulombic efficiency close to 99–100%.

Reproduced with permission. Copyright 2025, American Chemical Society

Pre-treated biomass waste melon peels for high energy density semi solid-state supercapacitors

Semi-solid-state supercapacitors employing highly porous activated carbon (AC) electrodes are promising, cost-effective, and environmentally friendly energy storage devices with exceptional power performance. In this work, for the first time in literature, we report a comparative study on different pre-treatments made on melon waste starting precursor to produce hierarchical large surface area porous AC. Also, for the first time in our knowledge, a gel polymer electrolyte (GPE) consisting in lithium trifluoromethanesulfonate in ethylmethylimidazolium trifluoromethanesulfonate, with a high ionic conductivity (∼3.3 × 10−3 S cm−1) and a working voltage window of ∼3.9 V vs Ag/Ag+, was used. The supercapacitors were electrochemically characterized with electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge-discharge tests. The working voltage window of the device was optimized in the range of 0–2.3V. Hydrothermally pre-treated AC-based supercapacitor is characterized by the best performance in terms of capacitance (∼161–170 F g−1), specific energy (29–31.34 Wh kg−1), and power density (839–860 W kg−1) at 1 A g−1. Supercapacitors based on ACs pre-treated via hydrothermal and ethanol soaking outperform devices based on simple chemically/physically ACs in rate performance, while hydrothermally pre-treated AC demonstrates superior stability over 8000 cycles, exhibits initial 15 % capacitance fading and coulombic efficiency close to 99–100 %.

Reproduced with permission. Copyright 2024, Elsevier

High performance quasi-solid-state supercapacitor based on activated carbon derived from asparagus waste

Supercapacitors with carbon electrodes derived from biomass and utilizing gel polymer electrolytes are currently a focal point in the development of highly efficient, environmentally friendly, and cost-effective energy storage devices. In this study, we present porous activated carbon derived from asparagus waste, prepared through chemical activation with ZnCl2 followed by physical activation with CO2, as a high-performance electrode material for supercapacitors. The performance of electrodes has been discussed in comparison with supercapacitors employing both gel polymer electrolytes and conventional liquid electrolytes i.e. 7 M KOH. The flexible film of the gel polymer electrolyte exhibits noteworthy characteristics, including a high ionic conductivity of ∼6.3 mS cm−1, and a high electrochemical stability window of ∼4.5 V. Supercapacitors prepared with this gel polymer electrolyte outperform supercapacitors with liquid electrolytes thanks to a broader electrochemical stability window, showing optimal charge-discharge performance, a specific capacitance of 160 F g−1, a specific energy of 31 Wh kg−1, and an effective power of 0.56 kW kg−1. The superior rate performance is demonstrated by powering a LED for a substantial duration, highlighting the exceptional capabilities of the system. Additionally, the supercapacitor employing the gel polymer electrolyte displays an extended stability, sustaining approximately 10,000 charge-discharge cycles with only a modest initial fading of ∼16 % in specific capacitance and maintaining a high coulombic efficiency of ∼100 %.

Reproduced with permission. Copyright 2024, Elsevier

Defective graphene decorated with TiO2 nanoparticles as negative electrodes in Li-ion batteries

In this work, the performance of novel negative electrodes for Li-ion batteries based on defective graphene synthesized via a scalable thermal exfoliation of graphite oxide and decorated with TiO2 nanoparticles is investigated. Titania polymorphs are interesting as battery electrode materials, owing to their high cycle stability, safety, abundance and negligible solid electrolyte interphase formation and volume changes upon cycling. Defective graphene, on the other hand, can embed TiO2 nanoparticles, forming a conductive hybrid nanocomposite anode material for Li-ion batteries, with improved Li-ion and electron transport, optimising power density. Here we propose two different synthetic approaches for the decoration of graphene with TiO2 nanoparticles: I) a novel chemical route where TiO2 nanoparticles, mainly anatase, were grown on graphene in hydrothermal mild conditions and II) a physical solid-state approach where hydrothermal TiO2 nanoparticles and graphene were mixed together via high energy ball-milling. The synthesized materials were analysed via powder X-ray diffraction, micro-Raman spectroscopy and HR-TEM, while the electrodes were electrochemically tested. Operando synchrotron diffraction was conducted on half-cell to investigate phase transitions in the electrode materials. Even in presence of small amount of graphene, significant improvement in capacity, reversibility, and high-rate capability were observed. In particular, the sample obtained through the addition of 1 wt% of graphene displayed a reversible capacity of more than 180 mA h/g after prolonged and wearing cycling. This result outperforms by 327 % the reversible capacity of pure TiO2 electrode.

Reproduced with permission. Copyright 2023, Elsevier

Graphene-Based Magnetocaloric Composites for Energy Conversion

Herein, a simple, versatile, and cost-effective method to fabricate innovative thermal conductive magnetocaloric (MC) composites, which offers a smart solution to manufacture active elements with desired geometries, overcoming the current thermal and mechanical limits of the most studied MC materials, is presented. The composite is prepared by embedding powder of a MC material in an epoxy matrix enriched with a graphene-based material, obtained by thermal exfoliation of graphite oxide. The graphene-enriched composite shows a significant improvement of the MC time response to the magnetic field, due to the formation of a 3D network that bridges the MC particles and reduces the metal–matrix contact resistance, thus creating a percolation path for an efficient heat transfer. Because of the simplicity and scalability of the preparation method and the great enhancement in response time, these new functional composites represent an important step for the effective application of MC materials in thermomagnetic devices for the energy conversion.

Reproduced with permission. Copyright 2022, Wiley

Asymmetric supercapacitors based on nickel decorated graphene and porous graphene electrodes

Ni-TEGO supercap

Thermal exfoliation of graphite oxide is a scalable way to produce macroscopic amount of defective graphene-based compounds with high specific surface area, ideal as electrode materials in high-performance electrochemical supercapacitors. In order to increase the stored energy, defective graphene has been decorated with Ni nanoparticles without exposing the system to air. During the first charge cycle in an aqueous electrolyte (KOH 3.5 M), Ni anchored to graphene proved to easily convert to Ni(OH)2 at the nanoscale and hence to reversibly assume Ni2+ and Ni3+ valence during cyclic voltammetry, through its conversion to NiOOH. Such reversible faradaic mechanism led to a one order of magnitude increase of the specific capacitance of electrodes, reaching up to 1900 F/g at 2 mV/s in KOH 3.5 M. An asymmetric supercapacitor was obtained by coupling a pure graphene negative electrode with a Ni decorated graphene positive one. The supercapacitor, operating with aqueous electrolyte, was successfully cycled in the 0–1.5 V voltage range, reaching a maximum specific energy of 37 Wh/kg and a maximum specific power of 5 kW/kg. The devices displayed good reversibility and retained 72% of the specific energy over 10 thousand of cycles. Such promising results disclose to possible industrial implementation of graphene-based supercapacitors, for a wide range of energetic application.

Reproduced with permission. Copyright 2022, Elsevier

Combined capacitive and electrochemical charge storage mechanism in high-performance graphene-based lithium-ion batteries

TEGO Li-ion batteries

Improvements in lithium (Li)-ion battery technology can be achieved by developing novel, high-performance electrode materials. Graphene appears to be a good candidate as an anode material for Li-ion batteries thanks to the similarity with graphite, the good electrical conductivity, the ability to achieve fast charge and discharge cycles, and the higher capability to host Li ions. Our previous studies demonstrated the capability of intercalating Li in graphene-based electrodes with a high specific capacity of 500 mA h/g at C/5 current. In this study, graphene, synthesized through scalable thermal exfoliation of graphite oxide, and hydrogenated graphene are used to assemble optimized Li-ion half-cells, which are systematically characterized by means of electrochemical measurements. Hydrogenated graphene boasts an impressive reversible specific capacity with fast charge/discharge capabilities, exceeding 370 mA h/g even at 25 C rate. Diffusion mechanisms of Li are characterized at different states of intercalation by means of electrochemical impedance spectroscopy. In addition, a novel combined electrostatic and electrochemical charge storage mechanism of Li ions in graphene-based electrodes is proposed, based on three-electrode cyclic voltammetry investigation. Furthermore, graphene and hydrogenated graphene anodes are paired with commercial cathode materials to study the feasibility of their application to full cells.

Reproduced with permission. Copyright 2022, Elsevier

In situ decoration of laser-scribed graphene with TiO2 nanoparticles for scalable high-performance micro-supercapacitors

Graphene-based miniaturized supercapacitors, obtained via laser conversion of suitable precursors, have been attracting recent attention for the production of energy storage small-scale devices. In this work, a one-pot synthesis of TiO2 nanoparticles embedded in porous graphene-based electrodes has been obtained with the LightScribe® technology, by converting the precursor materials through the absorption of a DVD burner infrared laser light. Enhanced electrochemical performance of devices has been achieved thanks to the combination of faradic surface reactions, arising from metal oxide nanoparticles, with the conventional electrochemical double layer capacitance, arising from porous graphene. Micro-supercapacitors, consisting of TiO2-graphene electrodes, have been tested by investigating two hydrogel polymer electrolytes, based on polyvinyl alcohol/H3PO4 and polyvinyl alcohol/H2SO4, respectively. Specific areal capacitance up to 9.9 mF/cm2 are obtained in TiO2-graphene devices, corresponding to a volumetric capacitance of 13 F/cm3 and doubling the pristine graphene-based device results. The micro-supercapacitors achieved specific areal energy and specific areal power of 0.22 μWh/cm2 and 39 μW/cm2, along with a cyclability greater than 3000 cycles. These high-performance results suggest laser-scribed TiO2-graphene nanostructures as remarkable candidates in micro-supercapacitors for environment-friendly, large-scale and low-cost applications.

Reproduced with permission. Copyright 2021, Elsevier

Nickel addition to optimize the hydrogen storage performance of lithium intercalated fullerides

The addition of transition metals to alkali intercalated fullerides proved to enhance their already good hydrogen absorption properties. Herein we present a study based on two different synthetic strategies, allowing the addition of nickel as aggregates with different size to the lithium fulleride Li6C60: the former is based on the metathesis of nickel chloride, while the latter on the thermal decomposition of nickel carbonyl clusters. The hydrogen-storage properties of the obtained materials have been investigated with manometric and calorimetric measurements, which indicated a clear enhancement of the final absorption value and kinetics with respect to pristine Li6C60, as a consequence of nickel surface catalytic activity towards hydrogen molecules dissociation. We found up to 10 % increase of the total H2 weight % absorbed (5.5 wt% H2) in presence of Ni aggregates. Furthermore, the control of the transition metal particles size distribution allowed reducing the hydrogen desorption enthalpy of the systems.

Reproduced with permission. Copyright 2020, Elsevier

Neutron scattering study of nickel decorated thermally exfoliated graphite oxide

Surface decoration of graphene-based nanostructures with metals has been predicted to be an efficient way towards the development of resistant catalysts and novel materials for energy applications, such as hydrogen production and storage. We report on an extensive neutron scattering study of a defective graphene-based material decorated with nickel nanoparticles, obtained via the chemical decoration of thermally exfoliated graphite oxide. The combination of neutron diffraction and inelastic neutron scattering measurements has been used to characterize the low-dimensional carbon backbone and the presence of the nickel nanoparticles, organized at the nanometer scale on the graphene plane. The structural features of this system, along with the nickel capability of dissociating the hydrogen molecule upon hydrogen treatment, are herein discussed.

Reproduced with permission. Copyright 2020, Elsevier