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Scissione micromeccanica della HOPG

(A.Geim & K. Novoselov, Manchester University 2004)

Produzione del grafene



Structural stability

Lindemann criterion <u> ~ 0.1d fusion

Mermin-Wagner theorem→ No long range order 

in 2D

Dynamics → divergence of the larger wavelenght 

phonons in 2D 

Anharmonic coupling terms between bending and stretching modes 

suppress these destructive fluctuations.

Graphene shows “ripples”









Bulk graphene (TEGO)

M. Riccò, D. Pontiroli et al, Nano Lett. 11, 4919 (2011) 
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Chemically synthesized graphene



Electronic properties

Reciprocal lattice (I Brillouin 

zone)



Grafene: Proprietà elettroniche





Dispersion law for 

free particles with 

mass

Dispersion law for 

massless free 

particles
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Massless electrons in graphene?

Micromechanical exfoliation of HOPG 

(A.Geim & K. Novoselov, Manchester University 2004)



Electrons in graphene behave like particles with 

zero rest mass and a velocity 

c* =       = 106 m/s :

1- Even when the concentration of charge 

carriers tends to zero, the conductivity never 

falls below a minimum value corresponding to 

one quantum unit of conductance.

2- The quantum Hall effect is anomalous: it 

exhibits half-integer filling factors.

3- The cyclotron mass mc of the carriers is 

related to their energy by the relation E= mc c*2
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Fermioni di Dirac

Relativistic quantum mechanics → Dirac equation

1- Particles of spin ½ have antiparticles associated 

with them.

2- Charge conjugation symmetry (same spinor for e-

and e+)

3- The energy spectrum of particles with mass has a 

gap 2E0= 2mc2

4- When E>>E0 E=c(h/2π) k

5- When m=0 E~k for whatever energy. The elicity 

(chirality) is defined.

Conical energy spectrum 

E=(h/2π) k vF
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Charge conjugation 

(electrons ↔ holes)

→ Sublattice A↔B

(pseudospin)

 𝜎



Dirac Fermions

In matter, electrons and holes generally behave differently.

In graphene they show perfect symmetry following the charge conjugation 

symmetry rule

The spinor wavefunction in QED is replaced by the pseudospin σ which 

identifies the sublattice (A or B) → chirality



Grafene: Trasporto

0<n<1013cm-2 sia e che h

Cyclotron mass mc

vF=106 m/s

Mobility: μ= σ/ n e  15000 cm2V-1s-1

(indip. from T e da n, determined by 

impurities↔semiconductors)



Graphene: Transport



Hall effect
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Quantum Hall Effect
Nobel Prize 1985 Klaus von Klitzig
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Quantum Hall Effect
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eterojunction GaAs-GaAlAs 

at 30mK 

Nr. of states for 

each Landau level



Quantum Hall Effect with Dirac Electron

Dirac Fermions m=0 →
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Quantum Hall Effect with Dirac Electron



Anomalous Quantum Hall Effect

Dirac Fermions → (QED)

K. S. Novoselov et al. Nature 438 (2005) 197
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Monolayer

Bilayer A-A

(chiral 

particle with 

mass: 

oximoron)

Bilayer A-B

(gap)



Singolo layer vs. bilayer

Singolo

Bilayer A-B

The origin of fractional 

quantum plateaus is in the 

existence of a state at E=0
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Effect of ripples?

Atiyah-Singer theorem (T. of superstrings)→ Being the states at E=0 

chiral, they are stable 

for gauge fields and 

space curvatures.

Ripples (B inhomogeneities 

up to 1T) do NOT inhibit 

anomalous QHE



Quantum Tunneling

In semiconductors the tunneling probability 

decreases exponentially with the height and 

width of the barrier (when ΔE<e-h).

Resonant tunnel: when E(e)=E(h) (in the 

barrier)

In graphene T=1

Klein paradox (QED)

A barrier 2mec
2 high allows the transmission of the el. through the 

formation of an e-p pair.

Reformulation of the Heisenberg principle in QED
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